Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Friday E Uboh

University of Calabar, Nigeria

Title: BTEX is implicated in gasoline-induced oxidative stress in male albino Wistar rats

Biography

Biography: Friday E Uboh

Abstract

The plasma and liver tissue hydrocarbon contents, superoxide dismutase (SOD) and catalase (CAT) activities, malondialdehyde (MDA) and glutathione (GSH) levels of rats orally exposed to gasoline were assessed in this study. Eighteen adult male albino Wistar rats (210.0±20.0 g), distributed into three groups, of six rats each were used in the study. Rats in groups one and two, which served as controls, were given distilled water and sunflower oil respectively, while rats in group three (test group) were given 2 ml/kg b.wt. of gasoline in sunflower oil vehicle, for thirty, sixty and ninety days. At the end of the respective exposure periods, the animals were sacrificed, and relevant tissues collected and processed for analyses. The types and concentrations of hydrocarbons in the plasma and liver tissues were analysed by gas chromatography with flame ionized detector (GC-FID), while SOD and CAT activities, MDA and GSH levels were analysed by standard spectrophotometric methods. The results obtained from this study showed the presence of benzene, toluene, ethylene and xylene (BTEX) in the plasma and liver tissues of rats exposed to gasoline at concentrations significantly (p<0.05) higher than the respective concentration recorded for the controls; and that the plasma and liver tissue MDA level was significantly (p<0.05) higher, while SOD, CAT and GSH activities were significantly (p<0.05) lower in test rats, compared respectively to the control groups. However, the plasma and liver tissue BTEX, MDA, SOD, CAT and GSH activities recorded in rats exposed for sixty and ninety days were significantly (p<0.05) different from the activities  recorded in rats exposed for thirty days, while no significant (p>0.05) difference was recorded between sixty and ninety days of exposure. This suggests that BTEX are largely absorbed from the GIT, and distributed within the body tissues, including the blood and liver tissues, following sub-chronic oral exposure to gasoline. Hence, that the raised plasma and liver tissue MDA, and reduced SOD, CAT and GSH activities in test animals may be attributed to the raised tissue BTEX levels. The results of this study therefore give a strong indication that BTEX is likely implicated in gasoline induced oxidative stress in rats.